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Abstract

Atypical atrial flutter (AAF) is a cardiac arrhythmia
commonly developed following catheter ablation for atrial
fibrillation. Patient-specific computational simulations of
propagation have shown promise in prospectively predict-
ing AAF reentrant circuits and providing useful insight
to guide successful ablation procedures. These patient-
specific models require a large number of inputs, each with
an unknown amount of uncertainty. Uncertainty quantifi-
cation (UQ) is a technique to assess how variability in a set
of input parameters can affect the output of a model. How-
ever, modern UQ techniques, such as polynomial chaos
expansion, require a well-defined output to map to the in-
puts. In this study, we aimed to explore the sensitivity of
simulated reentry to the selection of fibrosis threshold in
patient-specific AAF models. We utilized the image inten-
sity ratio (IIR) method to set the fibrosis threshold in the
LGE-MRI from a single patient with prior ablation. We
found that the majority of changes to the duration of reen-
try occurred within an IIR range of 1.01 to 1.39, and that
there was a large amount of variability in the resulting
arrhythmia. This study serves as a starting point for fu-
ture UQ studies to investigate the nonlinear relationship
between fibrosis threshold and the resulting arrhythmia in
AAF models.

1. Introduction

Atypical atrial flutter (AAF) is a cardiac arrhythmia
commonly developed following catheter ablation for atrial
fibrillation [1]. Additional catheter ablation is the most
common treatment for AAF; however, up to 63% of pa-
tients experience AAF recurrence 1-year post-ablation [2].
There is a critical need to develop more robust and lasting
AAF treatment strategies.

Patient-specific computational simulations of propaga-

tion have shown promise in prospectively predicting AAF
reentrant circuits and providing useful insight to guide suc-
cessful ablation procedures [3]. However, these simula-
tions require the user to create geometric models from im-
ages and select ionic model parameters, both of which in-
troduce sources of uncertainty and error to the resulting
AAF. Variability in the ionic model parameters has been
shown to affect the reentrant circuits of patient-specific
simulations [4]. Variability in the geometric models, which
are often based on late gadolinium-enhanced (LGE) MRI
images, arises from several user-defined image-intensity
thresholds. Specifically, the fibrosis regions are gener-
ated based on a choice of threshold, which can be selected
based on a variety of methods [5]. The selection of the fi-
brosis threshold can introduce unknown variability into the
generated fibrosis region. This variability has an unknown
effect on the output of these patient-specific simulations.
In order to use patient-specific models clinically in a safe
and effective manner, we must understand the relationship
between the variability of the input parameters and the out-
put of the simulation.

Uncertainty quantification (UQ) is a technique to as-
sess how variability in a set of input parameters can af-
fect the output of a model [6]. However, modern UQ
techniques, such as polynomial chaos expansion, require
a well-defined output to map to the inputs. Clinically, the
desired outputs from patient-specific AAF simulations are
the locations and characteristics of the AAF circuits. Be-
cause subtle changes to the model parameters may result
in substantial changes to the AAF reentry circuits, auto-
matically identifying these characteristics from simulation
results and formulating them into an interpretable yet com-
prehensive UQ output is challenging. Initial studies must
first explore the broad behavior of such AAF models in the
context of input uncertainty to identify a suitable strategy
for the application of more advanced UQ techniques.

In this study, we focused on changes to the threshold
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used to identify fibrosis from LGE MRI images. We aimed
to explore the changes in simulated reentry to the selec-
tion of fibrosis threshold and identify simulation output
metrics that could be used to create an interpretable and
comprehensive understanding of model behavior in sub-
sequent UQ analyses based on realistic ranges of fibrosis
values. Using a single patient-specific atrial geometry, we
varied the fibrosis threshold and tracked changes in simu-
lated reentrant activity across the model.

2. Methods

2.1. Geometric Model Generation

An LGE-MRI of a patient with a previous ablation was
obtained from the University of Utah Hospital database.
All data acquisition and procedures were approved by
the University of Utah Internal Review Board (IRB). The
LGE-MRI images were manually segmented to obtain the
left atrial endocardial surface using Corview (The Univer-
sity of Utah, Salt Lake City, United States). Scar and fi-
brosis were mapped to the endocardial surface from the
segmentation, which was then dilated by 1.5 mm to obtain
the epicardial surface. Using these surfaces, we generated
a tetrahedral mesh with TetGen [7]. The myocardial fiber
orientation was then mapped from the human atrial fiber
atlas to our meshes using the universal atrial coordinate
system [8, 9]. The average edge length of the meshes was
0.644 mm.

2.2. Grid Search of Fibrosis Thresholds

We applied fibrosis and scar thresholding using the im-
age intensity ratio (IIR) based on a range of approaches
described in the literature [10–12]. Pixels with an IIR
> 1.62 were considered scar; for fibrosis, we selected
eight evenly spaced thresholds, ranging from 0.93 to 1.46.
These thresholds became the source of variability in the
simulations.

2.3. Computational Simulations of AAF

Simulations were performed using the monodomain for-
mulation in openCARP [13] with the Courtemanche ionic
model to generate human atrial action potentials [14]. The
parameters of the Courtemanche models were adjusted in
each tissue region as shown in Table 1. The conductivities
of each tissue region were also adjusted to achieve a lon-
gitudinal conduction velocity of 0.80 m/s and transverse
conduction velocity of 0.40 m/s in the healthy tissue (Ta-
ble 2) [15].

To induce atrial flutter, we applied a stimulus from nine
individual sites. Each stimulus consisted of eight S1 pulses

Tissue Region GKr GNa GK1 Gto GCaL

Healthy 1.6 2.0 0.8 0.5 0.3
Fibrosis 1.6 1.2 0.4 0.5 0.15

Scar 1.6 1.2 0.4 0.5 0.15

Table 1. Ionic Model Factors. The Ionic model parameters
and the factor they were multiplied by for each region.

Tissue Region Longitudinal (S/m) Transverse (S/m)
Healthy 0.3479 0.1606
Fibrosis 0.0627 0.0627

Scar 0.0000 0.0000

Table 2. Conductivity Parameters. The conductivity pa-
rameters in each fiber direction for all three regions.

with a cycle length of 600 ms. The S1 pulses were fol-
lowed by a premature S2 pulse, ranging from 180 to 250
ms after the final S1 pulse. If activity was detected after the
S2 pulse (nodes with potential > -40 mV), the simulation
was continued for 1.9 s after the S2 beat to let the reentrant
activity propagate and either become stable or fade away.
Reentrant activity that sustained for the entire 1.9 seconds
around the same site was defined as AAF.

3. Results

3.1. Reentry Duration

The ability to induce flutter across all thresholds and
stimulus sites is shown in Figure 1. Reentrant activity oc-
curred following pacing from each stimulus sites. Stim-
ulus site 3 was the only site incapable of inducing AAF.
Stimulus sites 4 and 9 resulted in AAF across all fibrosis
thresholds. The ability to induce AAF varied based on the
fibrosis levels for stimulus sites 1, 2, 5, 6, 7, and 8.

3.2. Activation Maps

The response of simulated activation to threshold selec-
tion is illustrated in Figure 2, which shows activation maps
for stimulus site 2 across fibrosis thresholds. These acti-
vation maps correspond to the reentrant activity plotted in
Figure 1. The maps showed three substantially different
sites of reentrant activity corresponding to three different
fibrosis thresholds. The first site appeared to rotate around
a patch of fibrosis on the lower anterior part of the atrium,
and was observed at IIR thresholds of 0.93 and 1.01. The
next site of reentrant activity was around a large patch of
scar on the posterior side of atrium, observed only with a
threshold of 1.08. The final site of reentrant activity was
around a patch of fibrosis on the roof, which occurred at
the thresholds, 1.16, 1.24, 1.31, and 1.39.
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Figure 1. The inducibility at each fibrosis threshold. The
rows correspond to the fibrosis threshold, and the columns
to the stimulus site. Only durations of > 1.9 ms were con-
sidered to be AAF (green). Durations of < 1.9 ms were
considered ”some reentry” (yellow), whereas duration of 0
were ”no induction” (red). The number of unique circuits
observed at each threshold is shown in the final column.

4. Discussion

In this study, we simulated atypical atrial flutter using a
typical range of fibrosis thresholds in a single patient ge-
ometry. Our aims were 1) to explore the sensitivity of sim-
ulated reentry to the selection of fibrosis threshold used to
create the geometric model of the atria, and 2) to identify
simulation output metrics that could be used to create an
interpretable and comprehensive understanding of model
behavior.

The most notable result was the dramatic changes
in reentrant duration and location in response to small
changes in the threshold levels of fibrosis, even when pac-
ing occurred from the same site. The ability to sustain flut-
ter also depended on the fibrosis threshold and, less sur-
prisingly, on the pacing site location. Reentry duration and
the stability of sustained AAF appeared to be independent
of the location of the flutter circuit. Although we observed
changes in simulation behavior throughout the range of
fibrosis-threshold values, the majority of changes to the
duration of reentry occurred within an IIR range of 1.01
to 1.39, a range that captures the values proposed in the
literature [10, 11]. The profound variability of the result-
ing arrhythmias calls for further study using sophisticated
UQ approaches to capture what is clearly a nonlinear rela-
tionship.

Our second goal remains unresolved, limited by the abil-
ity of a single output metric to capture such variability as
the path of a reentrant circuit. The duration of each cir-
cuit is a possible candidate metric; however, it is not clear
what clinical meaning this value has when characterizing
a circuit or suggesting possible ablation targets.

This study was limited to a single patient’s atrial

anatomy and scar pattern; the obvious next step is to ex-
pand to more cases. Previous studies have shown other
factors besides fibrosis can affect reentry, such as shape,
size, and baseline conduction velocities[16]. Each of these
parameters introduces another source of uncertainty in pa-
rameter selection and another motivation for advanced UQ
studies to establish the sensitivity of simulation outputs to
these uncertainties.
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